Toll-Like Receptor 4 Inhibition Improves Oxidative Stress and Mitochondrial Health in Isoproterenol-Induced Cardiac Hypertrophy in Rats
نویسندگان
چکیده
BACKGROUND Inflammation remains a crucial factor for progression of cardiac diseases and cardiac hypertrophy remains an important cause of cardiac failure over all age groups. As a key regulator of inflammation, toll-like receptor 4 (TLR4) plays an important role in pathogenesis of cardiac diseases. Being an important regulator of innate immunity, the precise pathway of TLR4-mediated cardiac complications is yet to be established. Therefore, the primary objective of the present study was to find the role of TLR4 in cardiac hypertrophy and the molecular mechanism thereof. METHODS Cardiac hypertrophy was induced with administration of isoproterenol (5 mg/kg/day, sc). TLR4 receptor inhibitor RS-LPS (lipopolysaccharide from the photosynthetic bacterium Rhodobacter sphaeroides; 5 μg/day) and agonist lipopolysaccharide (LPS) (from Escherichia coli; 3.12 μg/day) were administered through osmotic pump along with isoproterenol. Cardiac hypertrophy as well as oxidative stress and mitochondrial parameters were evaluated. RESULTS Cardiac hypertrophy was confirmed with increased heart weight/body weight ratio as well as assessment of hypertrophic markers in heart. There was a marked increase in the TLR4 expression and oxidative stress along with mitochondrial dysfunction in ISO group. TLR4 inhibition significantly decreased heart weight/body weight ratio and ANP, collagen, and β-MHC expression and restored the disturbed cellular antioxidant flux. The mitochondrial perturbations that were observed in hypertrophy heart was normalized after administration of TLR4 inhibitor but not with the agonist. TLR4 agonism further exaggerated the oxidative stress in heart and hence accelerated the disease development and progression. CONCLUSION Our data show that increased TLR4 ligand pool in cardiac hypertrophy may exaggerate the disease progression. However, inhibition of TLR4 attenuated cardiac hypertrophy through reduced cardiac redox imbalance and mitochondrial dysfunction.
منابع مشابه
Role of oxidative stress in the aortic constriction-induced ventricular hypertrophy in rat
Introduction:Severe abdominal aortic constriction above the renal arteries induces arterial hypertension above the stenotic site that is the cause of cardiac hypertrophy. Previous studies have shown that high blood pressure induces myocardial oxidative stress with conflicting results. In the present study, we assessed the effects of acute hypertension on the myocardial oxidative stress an...
متن کاملLactobacillus Paracasei Has Anti-Inflammatory Effect on the Heart Failure Induced by Isoproterenol in Rats
Background: Heart failure (HF) has become one of the most prevalent cardiovascular problems worldwide. Considering the beneficial effects of probiotics on human health, we aimed to investigate the anti-inflammatory effect of oral administration of Lactobacillus paracasei in HF induced by isoproterenol. Methods: Forty Wistar male rats weighing 80g on average were randomly assigned to five grou...
متن کاملModerate aerobic exercise training decreases middle-aged induced pathologic cardiac hypertrophy by improving Klotho expression, MAPK signaling pathway and oxidative stress status in Wistar rats
Objective(s): This study aimed to investigate the effect of aerobic training on serum levels of Klotho, cardiac tissue levels of H2O2 and phosphorylation of ERK1/2 and P38 as well as left ventricular internal diameter (LVID), the left ventricle wall thickness (LVWT) and fibrosis in middle-aged rats. Materials and Methods: Forty wistar rats, including young rats (n=10, 4 month-old) and middle-ag...
متن کاملEmpagliflozin alleviates renal inflammation and oxidative stress in streptozotocin-induced diabetic rats partly by repressing HMGB1-TLR4 receptor axis
Objective(s): Empagliflozin, a sodium-glucose cotransporter-2 (SGLT-2) inhibitor, possesses verified anti-inflammatory and anti-oxidative stress effects against diabetic nephropathy. The present investigation aims to examine empagliflozin effects on the renal levels of high mobility group box-1 (HMGB1), a potent inflammatory cytokine, and its respective receptor toll-like receptor-4 (TLR-4) in ...
متن کاملInhibition of PIKfyve prevents myocardial apoptosis and hypertrophy through activation of SIRT3 in obese mice
PIKfyve is an evolutionarily conserved lipid kinase that regulates pleiotropic cellular functions. Here, we identify PIKfyve as a key regulator of cardiometabolic status and mitochondrial integrity in chronic diet-induced obesity. In vitro, we show that PIKfyve is critical for the control of mitochondrial fragmentation and hypertrophic and apoptotic responses to stress. We also provide evidence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017